INTEGRATED CIRCUITS

DATA SHEET

74LVT16240A

3.3 V LVT 16-bit inverting buffer/driver (3-State)

Product data Supersedes data of 1998 Feb 19

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

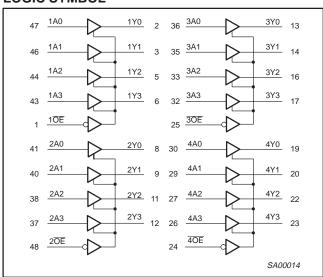
FEATURES

- 16-bit bus interface
- 3-State buffers
- Output capability: +64 mA/-32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up 3-State
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74LVT16240A is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V.

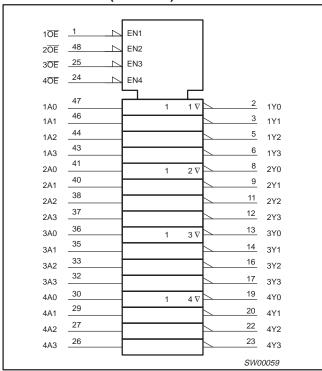
This device is an inverting 16-bit buffer that is ideal for driving bus lines. The device features four Output Enables ($1\overline{OE}$, $2\overline{OE}$, $3\overline{OE}$, $4\overline{OE}$), each controlling four of the 3-State outputs.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	PARAMETER CONDITIONS $T_{amb} = 25 ^{\circ}\text{C}$			
t _{PLH} t _{PHL}	Propagation delay nAx to n∀x	$C_L = 50 \text{ pF};$ $V_{CC} = 3.3 \text{ V}$	1.9	ns	
C _{IN}	Input capacitance nOE	V _I = 0 V or 3.0 V	3	pF	
C _{OUT}	Output capacitance	Outputs disabled; V _O = 0 V or 3.0 V	9	pF	
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} = 3.6 V	70	μΑ	

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	PART NUMBER	DWG NUMBER
48-Pin Plastic SSOP Type III	–40 °C to +85 °C	74LVT16240ADL	SOT370-1
48-Pin Plastic TSSOP Type II	–40 °C to +85 °C	74LVT16240ADGG	SOT362-1


LOGIC SYMBOL

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

Inp	uts	Outputs
nOE	nAx	n₹x
L	L	Н
L	Н	L
Н	Х	Z

H = HIGH voltage level

L = LOW voltage level

X = Don't care

Z = High Impedance "off" state

PIN CONFIGURATION

1 0E		48	2 OE
1Y0	2	47	1A0
1Y1	3	46	1A1
GND	4	45	GND
1Y2	5	44	1A2
1Y3	6	43	1A3
Vcc	7	42	VCC
2Y0	8	41	2A0
2Y1	9	40	2A1
GND	10	39	GND
2Y2	11	38	2A2
2Y3	12	37	2A3
3Y0	13	36	3A0
3Y1	14	35	3A1
GND	15	34	GND
3Y2	16	33	3A2
3Y4	17	32	3A3
VCC	18	31	V _{CC}
4Y0	19	30	4A0
4Y1	20	29	4A1
GND	21	28	GND
4Y2	22	27	4A2
4Y3	23	26	4A3
40E	24	25	3 OE
		ו SA00	0013
		JAUL	7010

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26	1A0-1A3 2A0-2A3 3A0-3A3 4A0-4A3	Data inputs
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	1 <u>7</u> 0-1 <u>7</u> 3 2 <u>7</u> 0-2 <u>7</u> 3 3 <u>7</u> 0-3 <u>7</u> 3 4 <u>7</u> 0-4 <u>7</u> 3	Data outputs
1, 48, 25, 24	10E, 20E, 30E, 40E	Output Enables
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0 V)
7, 18, 31, 42	V _{CC}	Positive supply voltage

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V _I < 0 V	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0 V	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or HIGH state	-0.5 to +7.0	V
	DC output ourrest	Output in LOW state	128	A
lout	DC output current	Output in HIGH state	-64	mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction

temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWIBUL	PARAMETER	MIN	MAX	UNII
V _{CC}	DC supply voltage	2.7	3.6	V
VI	Input voltage	0	5.5	V
V_{IH}	HIGH-level input voltage	2.0		V
V_{IL}	Input voltage		0.8	V
I _{OH}	HIGH-level output current		-32	mA
I _{OL}	LOW-level output current		32	mA
	LOW-level output current; current duty cycle ≤ 50%; f ≥ 1 kHz		64	
Δt/Δv	Input transition rise or fall rate; Outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

DC ELECTRICAL CHARACTERISTICS

				I	IMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	T _{amb} = -4	UNIT				
				MIN	TYP ¹	MAX		
V _{IK}	Input clamp voltage	$V_{CC} = 2.7 \text{ V; } I_{IK} = -18 \text{ mA}$			-0.85	1.2	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V; } I_{OH} = -100 \mu\text{A}$		V _{CC} -0.2	V _{CC}			
V_{OH}	HIGH-level output voltage	V _{CC} = 2.7 V; I _{OH} = -8 mA		2.4	2.5		V	
		V _{CC} = 3.0 V; I _{OH} = -32 mA		2.0	2.3			
		V _{CC} = 2.7 V; I _{OL} = 100 μA			0.07	0.2		
		V _{CC} = 2.7 V; I _{OL} = 24 mA			0.03	0.5		
V_{OL}	LOW-level output voltage	V _{CC} = 3.0 V; I _{OL} = 16 mA			0.25	0.4	٧	
		V _{CC} = 3.0 V; I _{OL} = 32 mA			0.30	0.5		
		V _{CC} = 3.0 V; I _{OL} = 64 mA			0.40	0.55		
		$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}$	Control pins		0.1	±1.0	μΑ	
		V _{CC} = 0 V or 3.6 V; V _I = 5.5 V			0.4	10		
tį	Input leakage current	V _{CC} = 3.6 V; V _I = V _{CC}			0.1	1		
		V _{CC} = 3.6 V; V _I = 0 V	Data pins ⁴		-0.4	- 5		
I _{OFF}	Output off current	$V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} = 0 \text{ V to } 4.5 \text{ V}$			0.1	±100	μΑ	
		V _{CC} = 3 V; V _I = 0.8 V		75	135			
I _{HOLD}	Bus Hold current A inputs ⁶	V _{CC} = 3 V; V _I = 2.0 V	-75	-135		μΑ		
		$V_{CC} = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 3.6 \text{ V}$	±500					
I _{EX}	Current into an output in the HIGH state when V _O > V _{CC}	V _O = 5.5 V; V _{CC} = 3.0 V			50	125	μА	
I _{PU/PD}	Power-up/-down 3-State output current ³	$V_{CC} \le 1.2 \text{ V}; V_O = 0.5 \text{ V to } V_{CC}; V_I = GNOE/OE = Don't care$	ID or V _{CC}		1	±100	μΑ	
I _{OZH}	3-State output HIGH current	$V_{CC} = 3.6 \text{ V}; V_{O} = 3.0 \text{ V}; V_{I} = V_{IL} \text{ or } V_{IH}$			0.5	5		
I _{OZL}	3-State output LOW current	$V_{CC} = 3.6 \text{ V}; V_{O} = 0.5 \text{ V}; V_{I} = V_{IL} \text{ or } V_{IH}$		0.5	-5	μΑ		
I _{CCH}		V_{CC} = 3.6 V; Outputs High, V_I = GND or V_{CC} , I_{O} = 0			0.07	0.12	mA	
I _{CCL}	Quiescent supply current	$V_{CC} = 3.6 \text{ V}$; Outputs Low, $V_I = \text{GND}$ or		4.0	6.0			
I _{CCZ}		V_{CC} = 3.6 V; Outputs Disabled; V _I = GND or V _{CC} , I _O = 0 ⁵			0.07	0.12		
Δl _{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} -0.6 Other inputs at V_{CC} or GND	V,		0.1	0.20	mA	

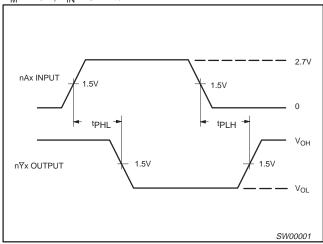
- All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.
 This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.
 This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 msec. From V_{CC} = 1.2 V to V_{CC} = 3.3 V ± 0.3 V a transition time of 100 µsec is permitted. This parameter is valid for T_{amb} = 25 °C only.

- 4. Unused pins at V_{CC} or GND.
 5. I_{CCZ} is measured with outputs pulled to V_{CC} or GND.
 6. This is the bus hold overdrive current required to force the input to the opposite logic state.

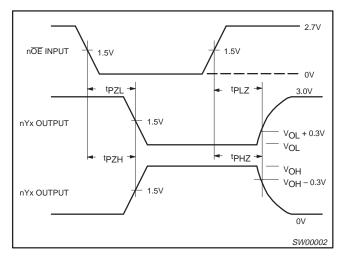
3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

AC CHARACTERISTICS


GND = 0 V; t_R = t_F = 2.5 ns; C_L = 50 pF; R_L = 500 Ω ; T_{amb} = -40 °C to +85 °C.

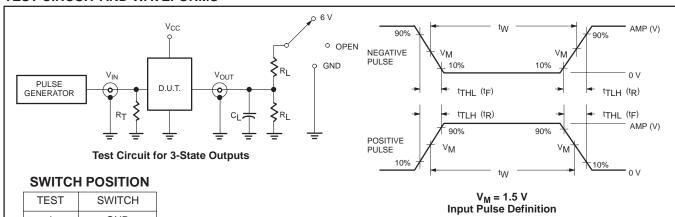
SYMBOL	PARAMETER	WAVEFORM	V _{CC}	= 3.3 V ±0.	$V_{CC} = 2.7 \text{ V}$	UNIT		
			MIN	TYP ¹	MAX	MAX		
t _{PLH} t _{PHL}	Propagation delay nAx to $n\overline{Y}x$	1	0.5 0.5	1.8 2.0	3.2 3.2	4.0 4.0	ns	
t _{PZH} t _{PZL}	Output enable time to HIGH and LOW level	2	1.0 1.0	2.3 2.1	4.0 4.4	5.0 4.8	ns	
t _{PHZ}	Output disable time from HIGH and LOW Level	2	1.0 1.0	3.2 3.0	4.5 4.4	5.0 4.8	ns	


NOTE:

AC WAVEFORMS

 $V_M = 1.5 \text{ V}, V_{IN} = \text{GND to } 2.7 \text{ V}$

Waveform 1. Input (nAx) to Output (n $\overline{Y}x$) Propagation Delays


Waveform 2. 3-State Output Enable and Disable Times

^{1.} All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 $^{\circ}C.$

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t _{PHZ} /t _{PZH}	GND
t_{PLZ}/t_{PZL}	6 V
t _{PLH} /t _{PHL}	open

DEFINITIONS

R_L = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 $R_T = Termination resistance should be equal to <math>Z_{OUT}$ of pulse generators.

FAMILY	IN	INPUT PULSE REQUIREMENTS										
	Amplitude	Rep. Rate	t _W	t _R	t _F							
74LVT16	2.7 V	≤10 MHz	500 ns	≤2.5 ns	≤2.5 ns							


SW00003

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

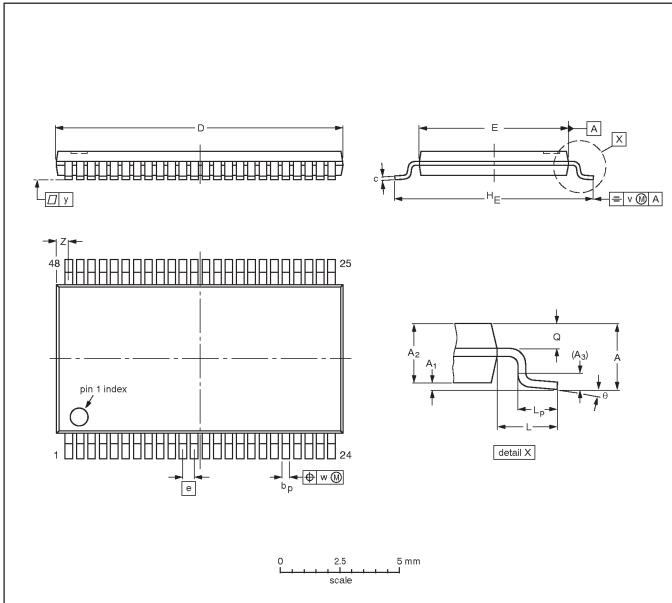
SOT370-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	c	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE			REFER	EUROPEAN	ISSUE DATE			
VE	RSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
so	T370-1		MO-118				-95-02-04- 99-12-27	

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1

DIMENSIONS (mm are the original dimensions).

UNIT	A max.	Α1	A ₂	А3	bp	c	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	٧	w	у	Z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	12.6 12.4	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.8 0.4	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE	
SOT362-1		MO-153				-95-02-10- 99-12-27	

3.3 V 16-bit inverting buffer/driver (3-State)

74LVT16240A

REVISION HISTORY

Rev	Date	Description
_3	20030221	Product data (9397 750 11152); ECN 853-1776 29438); supersedes product specification of 1998 Feb 19 (9397 750 03547).
		Modifications:
		Ordering information table on page 2 corrected: remove 'North America' column.
		"Logic symbol (IEEE/IEC)" on page 3 modified to correct pin names.
_2	19980219	Product specification (9397 750 03547); ECN 853–1776 18990; supersedes data of 1994 Dec 15.

Data sheet status

Level	Data sheet status ^[1]	Product status ^[2] [3]	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 02-03

Document order number: 9397 750 11152

Let's make things better.

Philips Semiconductors

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

^[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.